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Fig. 10. The behavior of eigenvalues and the values of eigenfunctions at
the ports in the case of Fig. 9.

V. CoONCLUSION

A basic algorithm and numerical examples of the syn-
thesis of planar circuits have been presented. When the
number of the prescribed cigenvalues and external ports is
relatively small, the results are satisfactory both in the
computing time and accuracy. However, research is stillata
primitive stage; further efforts are needed to make the

819

proposed method practical, especially for larger numbers of
eigenvalues and ports. In synthesis processes III and IV, the
problem of the multivalent region must be overcome to
make those methods practical.
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Equivalent Circuit Capacitance of Microstrip
Step Change in Width

CHANDRA GUPTA, STUDENT MEMBER, IEEE, AND ANAND GOPINATH, MEMBER, IEEE

Abstract—Calculated results which extend existing data on the
capacitance of step discontinuity are presented for w, /H of value 0.1,
0.5, 1.0, and 2.0, for relative dielectric constants of 15.1, 9.0, 4.0, and
2.3, and for w, /H in the range 0.1-10.0. The quasi-static method of
calculation is used, and the excess capacitance associated with the
steps is determined by the solution of the integral equation using
Green’s functions.

INTRODUCTION

HE RANGE of data currently available on the micro-
strip discontinuities is inadequate, thus microstrip cir-
cuit designs are currently implemented after a few trial
stages. The present paper extends the range of the capaci-
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tances of the step change in width discontinuity beyond that
provided by Farrar and Adams [1] and Benedek and
Silvester [2]. The calculations performed for this data utilize
the integral equation approach using Green's functions and
the concept of “excess charge” due to Benedek and Silvester
[2] to preserve numerical accuracy. The method of solution
discretizes the discontinuity into rectangular elements
and the excess charge is obtained by the Galerkin method.

Radiation and dispersion effects are neglected, and, there-
fore, the microstrip discontinuity problem may be reduced
to a quasi-static form. The stored energy of the step discon-
tinuity may then be represented by an equivalent circuit in
the form of a T circuit, given in Fig. 1(b), for the chosen
reference planes TT". The present calculations evaluate the
shunt capacitance of this circuit, the inductive componern...
have been presented elsewhere [3]

In the following sections, we briefly outline the formula-
tion and the method of solution followed by the results.
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Fig. 1. (a) Step in a microstrip. H 1s the height of the substrate. &, 1s the
permittivity of free space; ¢, is the permittivity of the dielectric. I and IT
are infinite lines terminating at 7T". 1 and 2 are the patched rectangles
to calculate “excess” charge. (b) Equivalent circuit for the step discon-
tinuity. Cgrp represents the capacitance associated with the step dis-
continuity. AL, and AL, are the inductances associated with the
discontinuity.

FORMULATION AND METHOD OF SOLUTION

The method of solution is to assume that the infinite-line
charge distributions extend from = oo, respectively, to the
reference plane TT" in Fig. 1(a). These charge distributions
are estimated for the infinite line, assuming constant poten-
tial in the normal way, using the concept of partial images in
the substrate [4]. However, these lines are semi-infinite lines
terminating at the reference plane, and to maintain potential
constant through the junction, additional “excess” charge
has to be added on these infinite-line charges. Thus this
excess charge is approximated over rectangular elements
patched on to the semi-infinite lines by expansion in a trial
set of functions. The coefficients of this expansion are
determined by the requirement that the potential over all
regions on the strip including the discontinuity remains at
the constant value.

Thus we have with the observation points on rectangular
element 1:

jl G160y dS + L G120.,, dS + L G oy Ooor dl

+ J Giowpbondl=¢ (1)
I

where

T, the unknown excess charge distribution in the ith
rectangular element;

Oy the known infinite-line charge distribution in the
Jth line for potential ¢;

G the Green’s function with the observation point
in the ith rectangle due to excess charge in the jth
rectangle (see (Al) in the appendix);

G.,2 the Green’s function for the semi-infinite line

extending from the reference plane TT', y = O to
y = £ o (see (A2) in the appendix);
¢ potential on the whole strip structure.
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Solution of (1) provides the unknown charge distribution
0.1, and the discontinuity capacitance to ground is given by

i j G dSJZ / L G dS. )

i=1"%i
We approximate o, in a trial set of functions f;(x,y) with
the approximation valid only over the ith rectangle:

CSTP = [

n

o = Z aj’ fj(x,J’)'

j=1

(3)

Taking the inner product of each term in (1) with f{x ),
gives nequations. Repeating this with the observation points
in all i rectangles, gives the matrix equation from which all
the coefficients g} are uniquely determined. Subsequent
integration and summation asin (2) determines the required
equivalent circuit capacitance.

In these calculations for the step capacitance, the
trial set of functions comprised of Newton-Lagrange
equispaced interpolatory polynomials. Integrations were
performed using Gaussian quadratures with appropriate
numbers of points. In the case of a singular integral where
the observation points and expansion set liec in the same
rectangle, a change of variables eliminates this singularity
[S] and then integration is carried out using Gaussian
quadratures.

RESULTS

The infinite-line charge distributions were estimated
using eleventh-degree equispaced interpolatory polyno-
mials, with an adequate number of quadratures in this case
to provide accurate solutions. Comparison of the infinite-
line capacitance with other results in the literature [6], [7]
shows negligible differences in all cases.

Tests on the capacitance of the step discontinuity were
carried out by varying the degree of polynomials in x and y
from the fifth to the eighth degree, and on different lengths of
rectangles from [ = H to 3w. These results show at worst a
variation of less than 3 percent over the whole range;
therefore, all results were calculated for I = 3H, with polyno-
mials of the fifth degree in x and y. The choice of this degree
of polynomials was dictated by computer time considera-
tions, which became excessive for higher degrees.

The step results obtained for w, /H = 1.0, H = 1.0 m, for
various w, /H substrates ¢, = 9.6 are compared with those of
Farrar and Adams [1] and Benedek and Silvester [2] in
Table I. This table also gives the results of our calculations
obtained when the trial functions are bivariate monomials
complete to the second degree, i.e., [1, x, y, x2, xy, y?], and
when the degree of the interpolatory polynomials is the fifth
degree in x and y. In all cases the results of the interpolatory
polynomials is marginally higher than those given in [2],
though in any experimental verification these differences
will be lost in the uncertainty of the measurements. It is
thought that the results of the interpolation polynomials are
more accurate sence their degree is higher and also they are
vectorially better conditioned.

Fig. 2(a)-(d) provides, with curves of the equivalent
circuit, the normalized capacitance obtained from our com-
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TABLE 1
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Step Equivalent Capacitance
Calculated in Picofarads

Newton-Lagrange

Monomial Set Equispaced Interpolatory

wy/H  Farrar and Adams [1] = Benedek and Silvester [2]  [1,x,y,x2xy,y?] Polynomials
20 14.0 14.1 13.94408 15.14017
3.0 399 41.49674 43.62969
4.0 76.0 74.35829 76.60971
5.0 110.0 109.4661 112.5200
6.0 1440 146.3523 151.8152
o5

Er=23

05 €r =z 4.0

1

o 2 4 6 8 10 wo

(b)

puter program, for ¢, = 2.3, 4.0, 9.6, and 15.1; forw, /H =
0.1, 0.5, 1.0, and 20; and for various w,/H. These
calculations have been carried out using fifth-degree (in x
and y) equispaced interpolation polynomials.

APPENDIX

The Green’s function for the rectangular regions patched
on the semi-infinite lines with unit charge distribution is

Gij(x5Y5H/x09y09H)
_(1-k) 1
" dmeso [ —wol 5 0 =30
L ® kn—l
BRI e e o

(A1)

€ =96

Q5+

8 10 w,
H

@)

Fig. 2. (a)-(d) Step capacitance against w, using interpolation polynomials. C,,, capacitance per unit length of line w,.

The Green’s function for the semi-infinite line I with unit
charge distribution is

G— oo/Z(x’y)H/x0707H)

(1-k V= x)? + ¥ +y
= Smee. | 0% T, 02
e N T
2 (x — x0)* + 4(n + 1)*H?
+ 48!
o 0k (x — xo)* + 4n*H?

T2 212
+(1—k)10ge\/(x_x°) +)° +4n*H: Ty

where
k

A2
V= x0)2 +y> +dn?H? — (a2)

= (60 — &&0)/(€0 + &/0),

H height of the substrate,
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x0,H are the observation points on the strip,
Xo,yo,H are the source points on the strip.
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Equivalent Series Inductivity of a Narrow
Transverse Slit in Microstrip

WOLFGANG J. R. HOEFER, MEMBER, IEEE

Abstract—The series inductivity introduced by a narrow trans-
verse slit in a microstrip transmission line has been evaluated
theoretically, and a simple formula for this inductivity is presented.
Experimental results for slits of different depth obtained with the
resonant ring method compare well with theory. Applications of such
a slit include the fine tuning of the electrical length of stubs and the
compensation of excess capacitances at discontinuities.

I. INTRODUCTION

HE INSERTION of a narrow transverse slit or notch
into a microstrip transmission line leads to a local
concentration of the magnetic field which can be described
in terms of an equivalent series inductivity. Fig. 1(a)showsa
microstrip of width w containing a slit of depth a and width
b, centered about the z = 0 plane. Some current lines and
lines of magnetic field have been drawn to demonstrate the
effect of the slit on the propagating quasi-TEM ficlds.
The equivalent series inductivity AL (Fig. 1(b))is indepen-
dent of the slit width b as long as the slit is narrow, ie., bis
smaller than the substrate thickness & and much smaller
than the transmission line wavelength A,. In the following,
the normalized series inductivity AL/h will be calculated asa
function of w/h of the microstrip and the relative depth a/w
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Fig. 1. (a) Narrow transverse slit in a microstrip line. Some current lines
(dotted) and magnetic field lines (solid) demonstrate the effect of the slit.
(b) Equivalent series inductivity in the z = 0 plane.

of the slit. It is assumed that the substrate is nonmagnetic
(#, = 1). Dispersion and capacitive effects will be neglected.

II. ANALYSIS OF THE SLIT

The parameters of many transmission-line discontinuities
can be calculated with reasonable accuracy by assuming
that they create a perturbation in the form of a dipole field
when excited by the incident field. Wheeler [1] has outlined
some basic principles of this method. His equivalent volume
concept will be applied in the following study.

The main difficulty in the calculation of the slit inductivity
resides in the fact that, on the one hand, the application of
the equivalent volume concept calls for a uniform excitation
of the slit, but, on the other hand, the slit is situated partly in
the highly nonuniform fringing field of the microstrip.

To overcome this problem, the microstrip line is replaced



