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! ,~ proposed method practical, especially for larger numbers of

Step h

Fig. 10. The behavior of eigenvalues and the values of eigenfunction5 at
the ports in the case of Fig. 9.

V. CONCLUSION

A basic algorithm and numerical examples of the syn-

thesis of planar circuits have been presented. When the

number of the prescribed eigenvalues and external ports is

relatively small, the results are satisfactory both in the

computing time and accuracy. However, research is still at a

primitive stage; further efforts are needed to, make the

Equivalent

eigenvalues and ports. In synthesis processes III and IV, the

problem of the multivalent region must be overcome to

make those methods practical. -
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Circuit Capacitance of
Step Change in Width

Microstrip

CHANDRA GUPTA, STUDENT MEMBER, IEEE, AND ANAND GOPINATH, MEMBER, IEEE

Abstract—Calculated results which extend existing data on the

capacitance of step discontinuity are presented for w ~/H of value 0.1,

0.5,1.0, and 2.0, for relative dielectric constants of 15.1,9.0,4.0, and
2.3, and for Wz /H in the range 0.1–10.0. The quasi-static method of

calculation is used, and the excess capacitance associated with the
steps is determined hy the solution of the integral equation using

Green’s functions.

INTRODUCTION

T

HE RANGE of data currently available on the micro-

strip discontinuities is inadequate, thus microstrip cir-

cuit designs are currently implemented after a few trial

stages. The present paper extends the range of the capaci-
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tances of the step change in width discontinuity beyond that

provided by Farrar and Adams [1] and 13enedek and

Silvester [2]. The calculations performed for this data utilize

the integral equation approach using Green’s functions and

the concept of “excess charge” due to Benedek and Silvester

[2] to preserve numerical accuracy. The method of solution

discretizes the discontinuity into rectangular elements

and the excess charge is obtained by the Galerkin method.

Radiation and dispersion effects are neglected, and, there-

fore, the microstrip discontinuity problem maybe reduced

to a quasi-static form. The stored energy of the step discon-

tinuity may then be represented by an equivalent circuit in
the form of a T circuit, given in Fig. l(b), for the chosen

reference planes TT’. The present calculations evaluate the

shunt capacitance of this circuit, the inductive compomm ~.

have been presented elsewhere [3].

In the following sections, we briefly outline the formula-

tion and the method of solution followed by the results.
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Fig. L (a) Step in a mlcrostrip. H IS the height of the substrate. 60 K the

permlttlvlty of free space; .s, is the permittivity of the dielectric. I and II
are infinite lines terminating at T T’. 1 and 2 are the patched rectangles

to calculate “excess” charge. (b) Equivalent circuit for the step discon-

tinuity. C~~P represents the capacitance associated with the step dis-
continuity. AL. I and AL2 are the inductances associated with the
dlscontmtuty.

FORMULATION AND METHOD OF SOLUTION

The method of solution is to assume that the infinite-line

charge distributions extend from + cc, respectively, to the

reference plane TT! in Fig. 1(a). These charge distributions

are estimated for the infinite line, assuming constant poten-

tial in the normal way, using the concept of partial images in

the substrate [4]. However, these lines are semi-infinite lines

terminating at the reference plane, and to maintain potential

constant through the junction, additional “excess” charge

has to be added on these infinite-line charges. Thus this

excess charge is approximated over rectangular elements

patched on to the semi-infinite lines by expansion in a trial

set of functions. The coefficients of this expansion are

determined by the requirement that the potential over all

regions on the strip including the discontinuity remains at

the constant value.

Thus we have with the observation points on rectangular

element 1:

j“ GIIOeI ds + ~ G120.2 ds + j“ G-cnlzum~dl
1 2 I

+ j G+co/z~mrIdl= d (1)
II

where

rrei the unknown excess charge distribution in the ith

rectangular element;

fsmJ the known infinite-line charge distribution in the

Jth line for potential @;

Gij the Green’s function with the observation point

in the ith rectangle due to excess charge in thejth

rectangle (see (A 1) in the appendix);

G+m/2 the Green’s function for the semi-infinite line

extending from the reference plane TT’, y = O to

y = t co (see (A2) in the appendix);

4 potential on the whole strip structure.

Solution of(1) provides the unknown charge distribution

Oel, and the discontinuity y capacitance to ground is given by

We approximate rrci in a trial set of functions fi(x,y) with

the approximation valid only over the ith rectangle:

n

(3)

Taking the inner product of each term in (1) with~j(~o,~o),

gives n equations. Repeating this with the observation points
in all i rectangles, gives the matrix equation from which all

the coefficients a; are uniquely determined. Subsequent

integration and summation as in (2) determines the required

equivalent circuit capacitance.

In these calculations for the step capacitance, the

trial set of functions comprised of Newton–Lagrange
equispaced interpolator polynomials. Integrations were

performed using Gaussian quadrature with appropriate
numbers of points. In the case of a singular integral where

the observation points and expansion set lie in the same

rectangle, a change of variables eliminates this singularity

[5] and then integration is carried out using Gaussian

quadrature.

RESULTS

The infinite-line charge distributions were estimated

using eleventh-degree equispaced interpolator polyno-

mials, with an adequate number of quadrature in this case

to provide accurate solutions. Comparison of the infinite-

line capacitance with other results in the literature [6], [7]

shows negligible differences in all cases.

Tests on the capacitance of the step discontinuity were

carried out by varying the degree of polynomials in x and y

from the fifth to the eighth degree, and on different lengths of

rectangles from 1= H to 3w. These results show at worst a

variation of less than 3 percent over the whole range;

therefore, all results were calculated for 1= 3H, with polyno-

mials of the fifth degree in x and y. The choice of this degree

of polynomials was dictated by computer time considera-

tions, which became excessive for higher degrees.
The step results obtained for WI/H = 1.0, H = 1.0 m, for

various W2/H substrates Zr = 9.6 are compared with those of

Farrar and Adams [1] and Benedek and Silvester [2] in

Table I. This table also gives the results of our calculations

obtained when the trial functions are bivariate monomials

complete to the second degree, i.e., [1, x, y, X2, xy, yz], and

when the degree of the interpolatory polynomials is the fifth

degree in x and y. In all cases the results of the interpolator

polynomials is marginally higher than those given in “[2],

though in any experimental verification these differences

will be lost in the uncertainty of the measurements. It is

thought that the results of the interpolation polynomials are

more accurate tice their degree is higher and also they are

vectorially better conditioned.

Fig. 2(a)–(d) provides, with curves of the equivalent

circuit, the normalized capacitance obtained from our com-
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TABLE I

Step Equivalent Capacitance

Calculated in Picofarads

Newton-Lagrange
Monomial Set Equispaced Interpolator

W2JH Farrar and Adams [1] Benedek and Silvester [2] [I,x,y,x’,xy,y’] Polynomials

2.0 14.0 14.1 13.94408
3.0 39.9

15.14017
4L49674 43.62969

4.0 76.0 74.35829
5.0

76.60971
110.0 109.4661 112.5200

6.0 144.0 146.3523 151.8152

Fig. 2.
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(a)-(d) Step capacitance against w, using interpolation polynomials. CmW, capacitance per unit length of line

puter program, for g, = 2.3,4.0,9.6, and 15.1; for w ~/H =
0.1, 0.5, 1.0, and 2.0; and for various w z/H. These

calculations have been carried out using fifth-degree (in x

and y) equispaced interpolation polynomials.

APPENDIX

The Green’s function for the rectangular regions patched

on the semi-infinite lines with unit charge distribution is

Gij(~5y,H/~0,y0,H)

=(l-k)

[

1

4%% J(x - Xo)’ + (y - y.)’

m )#-1

1-‘1-‘~.?,J(x - x,)’+ (y - ye)’+ 4(nH)2 “
(Al)

Wz.

The Green’s function for the semi-infinite line I with unit

charge distribution is

G- ~,z(x,y,H/xo,O,H)

[

_ (1 - k) _log, /(x – XO)2+ y’ + y_—
87w,c0 <(x – x,)’+ y’ – y

(x - XO)2 + 4(7I + 1)2H2
+ ~ k“ loge

~=() (X - Xo)2 + 4n2H2

+ (1 – k) loge J(
X—xo 1‘2+‘:+4“2H2+y (A2)

J(x – ,xo)’ + y + 4n2H2 – y

where

k = (&. – &,&o)/(&o + &,&o),
H height of the substrate,
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x,y,H are the observation points on the strip,

X. ,yo ,H are the source points on the strip.
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Equivalent Series Inductivity of a Narrow
Transverse Slit in Microstrip

WOLFGANG J. R. HOEFER, MEMBER, IEEE

Abstract—The series inductivity introduced by a narrow trans-

verse slit in a microstrip transmission line has been evaluated
theoretically, and a simple formula for this inductivit y is presented.
Experimental results for slits of different depth obtained with the

resonant ring method compare well with theory. Applications of such

a slit include the fine tuning of the electrical length of stubs and the
compensation of excess capacitances at discontinuities.

I. INTRODUCTION

T HE INSERTION of a narrow transverse slit or notch

into a microstrip transmission line leads to a local

concentration of the magnetic field which can be described

in terms of an equivalent series inductivity. Fig. 1(a) shows a

microstrip of width w containing a slit of depth a and width

b, centered about the z = O plane. Some current lines and

lines of magnetic field have been drawn to demonstrate the
effect of the slit on the propagating quasi-TEM fields.

The equivalent series inductivity AL (Fig. 1(b)) is indepen-

dent of the slit width b as long as the slit is narrow, i.e., b is

smaller than the substrate thickness h and much smaller

than the transmission line wavelength Ar In the following,

the normalized series inductivity AL/h will be calculated as a
function of w/h of the microstrip and the relative depth a/w
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Fig. L (a) Narrow transverse slit in a microstrip line. Some current lines

(dotted) and magnetic field lines (solid) demonstrate the effect of the slit.
(b) Equivalent series inductivity in the z = O plane.

of the slit. It is assumed that the substrate is nonmagnetic

(p, = 1). Dispersion and capacitive effects will be neglected.

II. ANALYSIS OF THE SLIT

The parameters of many transmission-line discontinuities

can be calculated with reasonable accuracy by assuming

that they create a perturbation in the form of a dipole field

when excited by the incident field. Wheeler [ 1] has outlined

some basic principles of this method. His equivalent volume

concept will be applied in the following study.

The main difficulty in the calculation of the slit inductivity

resides in the fact that, on the one hand, the application of

the equivalent volume concept calls for a uniform excitation

of the slit, but, on the other hand, the slit is situated partly in

the highly nonuniform fringing field of the microstrip.

To overcome this problem, the microstrip line is replaced


